
Page 12 FoxRockX May 2017

In the May, July, and September, 
2016 issues, I looked at VFP’s 
crosstabs and SQL Server’s 
PIVOT functionality. Both allow 
you to turn rows into columns, 
usually to aggregate data. The 
result may have many columns 
(and in some cases, you may not 
know their names), which makes 
traditional reporting diffi cult. In 
this article, we’ll start to look at 
options for reporting on crosstab 
and pivot data, and in fact, any 
kind of wide data, from VFP.
Traditional reporting in a VFP 
application involves creat-
ing reports using the Report 
Designer. For most application 
data, creating such reports is 
straightforward. You simply cre-
ate a column in the report for 
each fi eld of interest. But cross-
tab/pivot data makes that dif-
fi cult. At the time the report is 
designed, we often won’t know 
either how many data columns 
there are (since they’re based on 
the data we fi nd) or the names 
of those columns. In this article, 
I show a technique that I fi rst 
learned roughly 20 years ago in a 
FoxTalk article by Nancy Jacob-
sen. Improvements in the Report 
Designer since then make the 
technique easier to use today.

Beyond VFP reports, customers today expect 
more. They may want to have data exported to 
Excel, or see graphs and charts. In future articles, 
I’ll look at how to send your crosstab and pivot 
data to those.

Handling crosstabs and 
other wide data in VFP 
reports
When the data you want to report on has many columns, you have a few 
options. One takes advantage of VFP’s fl exibility.

Tamar E. Granor, Ph.D.

The Problem with Reports
To create a report in VFP’s Report Designer, you 
drop controls onto the report and position them as 
desired. (There’s lots more you can do, but that’s 
the core activity.) To include fi elds, you use the 
Field control, which lets you specify an expres-

F igure 1. The Field Properties dialog lets you specify what a Field control in a report shows. 
Most often, it’s just a fi eld of a table or cursor.



May 2017 FoxRockX Page 13

sion using the dialog shown in Figure 1. For most 
reports, the expression for most Field controls is 
simply a fi eld of a table or cursor. Somedays, you 
add formatting with TRANSFORM() or combine a 
table fi eld with some fi xed text or combine multiple 
fi elds into a single report fi eld.

The key point is that the expression includes 
the name of the fi eld. When reporting on a cross-
tab, you may not know the name of each fi eld in the 
cursor at the time you design the report.

Even trickier, because the list of fi elds in the 
crosstab result depends on the values in the origi-
nal data, you may not know how many fi elds are in 
the crosstab result. In addition, it’s possible to have 
more fi elds than fi t on a single page.

For example, the query in Listing 1 (repeated 
from my May, 2016 article and included as 
SalesPersonAnnualSumAvgCnt.PRG in this 
month’s downloads) computes the total sales, 
average sale and number of sales for each employee 
for each year. The number of columns in the 
result depends on the number of years for which 
there is data. Columns have names like N_1997 
(for total sales in 1997). (To run this code and the 
other examples in this article, you need to make 
sure FastXTab.PRG is in the path or add the path 
to each reference to the program in the code. You 
can download FastXTab, discussed in my May, 
2016 article from http://praisachion.blogspot.
com/2015/02/fastxtab-version-16.html .) Figure 2. 
shows partial results.

L isting 1. This code creates a crosstab of sales by employee 
by year. For each employee, it has total sales, average sale 
and number of sales. 
SELECT EmployeeID, Orders.OrderID, OrderDate,;
       SUM(Quantity*UnitPrice) AS OrderTotal ;
  FROM Orders ;
    JOIN OrderDetails ;
      ON Orders.OrderID = ;
         OrderDetails.OrderID ;
  GROUP BY 1, 2, 3 ;
  INTO CURSOR csrOrderTotals

LOCAL oXTab AS FastXTab OF "fastxtab.prg"

oXTab = NEWOBJECT("fastxtab", "fastxtab.prg")
WITH oXTab AS FastXTab OF "fastxtab.prg"
  .cROWFIELD = 'EmployeeID'

  .cCoLFIELD = 'YEAR(OrderDate)'
  .nMULTIDATAFIELD = 3
  .acdatafi eld[1] = 'OrderTotal'
  .anFunctiontype[1] = 1
  .acDataField[2] = 'OrderTotal'
  .anFunctiontype[2] = 3
  .anDatafi eld[3] = 'OrderID'
  .anFunctiontype[3] = 2
  .couTFILE = "csrXtab"
  .lCursorOnly = .T.
  .lCLOSETABLE = .F.
  .RunXtab()
ENDWITH

FIELD() and EVAL() to the rescue
The solution to not knowing the fi eld names is to not 
put them into the report. Instead, use the FIELD() 
function. As the syntax shown in Listing 2 indicates, 
FIELD() accepts two parameters. The fi rst is the 
fi eld number; it’s required. The second parameter is 
optional and specifi es the table you’re interested in.

Li sting 2. The FIELD() function lets you refer to fi elds without 
knowing their names.
cFieldName = FIELD( nFieldNumber 
                    [, cAlias | nWorkarea ])

So rather than referring to N_1997 in the report, 
we can refer to FIELD(6). Using FIELD() solves the 
problem of not knowing the actual fi eld names.

FIELD() gives us the name of the fi eld. To 
determine its contents, use the EVAL()  function. 
EVAL() is short for EVALUATE() and that’s what 
it does. The function evaluates the expression you 
pass to it and returns the result. (I wrote at length 
about EVAL() and related language in the May, 
2009 issue.) 

So to get the value of N_1997 for the current 
record, use EVAL(FIELD(6)).

How many fi elds?
The other problems are that we don’t know how 
many columns we need in a report and we don’t 
know whether they’ll fi t on a single page. We solve 
these two together by creating a report with as 
many fi elds as fi t and then running it as many times 
as necessary to show all fi elds. Doing so requires a 
combination of a report and code to control it.

Fi gure 2. The code in Listing 1 produces a cursor with three columns for each year.



Page 14 FoxRockX May 2017

We’ll return to the example in Listing 1 later, 
but fi rst let’s consider a simpler example. The code 
in Listing 3 computes sales for each employee for a 
given year (1997) by month. There’s one column in 
the result for each month of the year. In this case, 
we know how many columns there are and their 
names, but they still don’t fi t onto a single page. 
Figure 3 shows partial results; in keeping with the 
theme of this article, they’re cut off on the right.

Li sting 3. This crosstab computes sales by employee by month 
for a single year.
SELECT EmployeeID, OrderDate, ;
       SUM(Quantity*UnitPrice) AS OrderTotal ;
  FROM Orders ;
    JOIN OrderDetails ;
      ON Orders.OrderID = ;
         OrderDetails.OrderID ;
  GROUP BY 1, 2 ;
  INTO CURSOR csrMonthlyTotals
  
LOCAL oXTab AS FastXTab OF "fastxtab.prg"

oXTab = NEWOBJECT("fastxtab", "fastxtab.prg")
WITH oXTab AS FastXTab OF fastxtab.prg"
    .cRowField = 'EmployeeID'
    .cColField = 'MONTH(OrderDate)'
    .cDataField = 'OrderTotal'
  .cOutFile = "csrXtab"
  .cCondition = 'year(OrderDate) = 1997'
  .lCursorOnly = .T.
  .lCloseTable = .T.
  .RunXtab()
ENDWITH

* Add employee name
SELECT PADR(ALLTRIM(FirstName) + ;
       (' ' + LastName), 30) AS cName, ;
       csrXtab.* ;
  FROM csrXtab ;
    JOIN Employees ;
      ON csrXtab.EmployeeID = ;
           Employees.EmployeeID ;
  ORDER BY LastName, FirstName ;
  INTO CURSOR csrReport

We can refer to the data fi elds in this cursor as 
FIELD(3), FIELD(4), and so on, but how can we get 
them all into a report?

First, we need to fi gure out how many data col-
umns we can fi t on a page. I decided to keep the 
paper in portrait mode (you can fi t more columns 
in landscape, of course) and a little experimentation 
showed me that along with the employee’s name, 
four data columns would fi t. Figure 4 shows the 
report; we’ll dig into its contents later in this article.

Once we know how many columns fi t, we can 
fi gure out how many pages we’ll need. (I’m using 
the word “page” here to indicate pages across. 
It’s entirely possible that there could be enough 
records in the cursor to print multiple pages of 
length, as well.) In the code to drive the report, we 
can set a variable, nFieldsPerPage, to that value (4, 
in this case). We also need to know where in the 
cursor the data fi elds start. In this case, they start in 
column 3, because column 1 is the employee name 

and column 2 is the 
employee number. 
Store that number in 
a variable as well; I 
call it nFirstDataCol. 
With that informa-
tion, we can divide 
the total number of 
data fi elds by fi elds 
per page, to deter-
mine how the num-
ber of pages. Listing 
4 shows this part of 
the code.

Fig ure 3. This cursor contains sales for each employee for each month of a single year.

Figu re 4. We can fi t the employee’s name and four months’ data on one page in portrait mode.



May 2017 FoxRockX Page 15

List ing 4. To make the report work, we need to ask some ques-
tions about the data: how many fi elds there are total, where 
the data fi elds start, and how many fi elds fi t on a page. Using 
those, we can determine the number of pages we need.
nFieldCount = FCOUNT("csrReport")
nFirstDataCol = 3
nFieldsPerPage = 4
nPages = CEILING((m.nFieldCount - ;
  m.nFirstDataCol)/m.nFieldsPerPage)

Obviously, though, we only want to create a 
single report, not a separate report for each page. 
So we need to specify the fi elds and headings in 
the report in a way that works for each page. Using 
FIELD() is clearly part of the answer, but we also 
need to calculate the parameter we pass to FIELD(), 
so that for each page of the report, we get the right 
subset of fi elds. Listing 5 shows the code that actu-
ally runs the report. The key is the calculation of 
 nPageBase, a variable that determines the posi-
tion of the fi rst data column on each page. For our 
example, on the fi rst page, nPageBase = 3, the fi rst 
data column. On the second page, nPageBase = 7, 
and so on. We can use  nPageBase in the report to 
fi gure out which fi elds appear on this page.

List ing 5. We run the report in a loop, once for each page.
FOR m.nPage = 1 TO m.nPages 
  nPageBase = (m.nPage-1) * m.nFieldsPerPage ;
              + m.nFirstDataCol
  
  REPORT FORM WideMonthlySales PREVIEW 
ENDFOR

Making the report generic
The fi nal piece is to design the report to use the 
pieces we’ve collected. The column headings, the 
fi elds themselves and any totals need to be generic.

We can assume that we only print a page if we 
have at least one data column to show there, but 
any other data column may or may not appear on 
the last page. In the sales by month example we’re 
working on, there are 12 data columns (one per 
month) and 4 data columns per page, so in fact, 
this isn’t an issue. But we’ll look at how to handle 
it anyway.

In the fi rst data column, to show the value, we 
use EVAL(FIELD(m.nPageBase)), as in Figure 5.

For the other data columns, we need to do 
two things. First, we need to count upward from 
nPageBase, so the second data column will show 
data from FIELD(m.nPageBase + 1), the third from 
FIELD(m.nPageBase + 2) and so on. 

Second, we need to consider the possibility 
that we’ve reached the end of the data columns. To 
handle that case, we wrap the expression in IIF(), 
as in Listing 6, which shows the expression for the 
fourth data column. Figure 6. shows the expression 
in the Field Properties dialog.

Listi ng 6. After the fi rst data column on the page, we have to 
take into account the possibility that there is no such column. 
iif(m.nPageBase + 3 <= m.nFieldCount, 
eval(fi eld(m.nPageBase + 3)), 0)

Figur e 5. The expression for the value of the fi rst data fi eld on the 
page is fairly simple because we know that it will always be present.

Figure 6. For data columns after the fi rst, we use IIF() so that we 
don’t try to evaluate a fi eld that doesn’t exist.



Page 16 FoxRockX May 2017

As the expression indicates, though, we’re 
still returning 0 when there’s no fi eld. We want to 
make sure nothing appears in a column for which 
there’s no corresponding fi eld. To do that, we use 
the Report Designer’s Print When capability, speci-
fying the same condition we used in IIF(). Figure 7 
shows the dialog.

For column totals, you apply the same tech-
niques, using EVAL(FIELD()), adding IIF() for data 
columns after the fi rst, and setting the total fi eld to 
print only when the column exists.

Column headings use similar techniques, but 
need a little creativity because the fi eld names in 
a crosstab may not be terribly informative. In this 
example, they look like N_1, N_2, etc. We know 
that the number at the end is the month number 
we’re interested in, so we can use that to build an 
informative heading. 

As before, we know we’ll have data in the fi rst 
column on the page. For the fi rst data column, we 
use the expression in Listing 7. Working from the 
inside out, we grab the fi eld name and extract every-
thing after the underscore. We convert that from 
character to numeric, and then use it as the month 
parameter to DATE(). Finally, we call CMONTH() 
to get the name of the month.

Listing  7. To get a meaningful column heading, 
we extract the numeric part of the fi eld name, 
build a date using that number for the month 
and then get the month name.
CMONTH(date(m.nReportYear, 
val(strextract(fi eld(;
            m.nPageBase),"_")), 1))

For subsequent columns, we need 
to wrap the heading in the same IIF() 
condition we used for the data values 
and totals, and specify Print When to 
make the column appear only when it 
actually exists.

For this example, that’s everything. 
Figure 8 shows the fi rst page of the 
report; Figure 9 shows the last (third) 
page. This month’s downloads include 
ReportSalesPersonMonthly.prg, which 
puts the whole process together, 
including running the report, and 
WideSalesAvgCount.frx, the report 
itself.

Handling more 
complicated data
Sometimes, as in Listing 1, the data 
created by the crosstab is more com-
plex. That code creates a cursor with 
three data columns for each year. In 
the report, we want all three of those 
columns on the same page. So we need 

Figure  7. To prevent anything from showing up for a non-existent 
column, we use the Print When tab of the Field Properties dialog.

Figure 8. When we run the loop, we see each (width) page of the report one at a 
time.

Figure 9. In this example, the fi nal page has the same number of columns as the oth-
ers, but that’s not required.



May 2017 FoxRockX Page 17

column 4, the beginning of the second year’s data 
on the page. Figure 11 shows the Field Properties 
dialog for the heading over the 4th, 5th and 6th data 
columns on the page.

This report also 
addresses an issue I 
ignored in the pre-
vious example, han-
dling the lines under 
headings (and, if you 
have them between 
rows or before 
totals). You really 
only want lines 
where there’s data. 
Here, each year’s 
data has a separate 
line under its head-
ings. The line for the 
second group on the 

page has a Print When condition to ensure that it 
appears only when there’s actually data. Figure 12 
shows the Print When tab of the Line Properties 
dialog with the expression.

The data fi elds themselves use the same 
EVAL(FIELD(n)) approach as in the previous 
example. The fi elds for the second year on the page 
are wrapped with IIF() and have a Print When con-
dition.

The code to drive the report is pretty much the 
same as in the previous example, fi guring out how 
many fi elds there are and how many pages, then 
looping to run the report repeatedly. The complete 

to make sure that the number of data columns per 
page is a multiple of 3. I chose to put 6 data col-
umns, two years’ worth on a page. Figure 10 shows 
the report layout.

Ideally, we should group the column headings 
as well, and show the year above the three columns 
for that year. In this case, the fi eld names are in the 
form N_1996, etc., so it’s easy to parse the year por-
tion out and build an expression, as in Listing 8.

Listing 8.  We want one column heading across all three col-
umns for a year. This expression parses the year from the 
name of the fi rst of the three fi elds for that year.
substr(fi eld(nPageBase + 1), 3) + ‘ sales’

As before, after the fi rst data column on a page, 
we need to make sure there’s actually data. In this 
case, because we know the data columns come in 
groups of 3, we don’t have to check until we get to 

Figure 10. There’s room for two years’ data on one page in this report.

Figure 11. This heading for the second year’s data on the page 
uses IIF() to make sure there is actual data to report.

Figure 12. This Print When condition ensures that the underline for 
the second year’s headings shows up only if there is a second year 
on the page.



Page 18 FoxRockX May 2017

Final thoughts
The technique in this article can be used for pretty 
much any data, as long as it’s somewhat regular, 
that is, as long as there’s a repeating set of one or 
more fi elds that run from some starting point in the 
table to the end. 

Of course, a VFP report isn’t the only way to 
show data. In future articles, I’ll look 
at how to report on crosstab and pivot 
data in Excel and using graphs.

Author Profi le
Tamar E. Granor, Ph.D. is the owner 
of Tomorrow’s Solutions, LLC. She has 
developed and enhanced numerous Visual 
FoxPro applications for businesses and 
other organizations. Tamar is author or 
co-author of a dozen books including the 
award winning Hacker’s Guide to Visual 
FoxPro, Microsoft Offi  ce Automation 
with Visual FoxPro and Taming Visual 
FoxPro’s SQL. Her latest collaboration is 
VFPX: Open Source Treasure for the VFP 
Developer, available at www.foxrockx.
com. Her other books are available from 
Hentzenwerke Publishing (www.hentzen-
werke.com). Tamar was a Microsoft Sup-
port Most Valuable Professional from the 
program's inception in 1993 until 2011. 
She is one of the organizers of the annual 
Southwest Fox conference. In 2007, Tamar 
received the Visual FoxPro Community 
Lifetime Achievement Award. You can 
reach her at tamar@thegranors.com or 
through www.tomorrowss olutionsllc.com.

program to drive this report is included in this month’s 
downloads as reportsalespersonannualsumavgcnt.
prg.

Figure 13 shows the fi rst page of the report, 
while Figure 14 shows the fi nal (second) page. 
Note that the right-hand side in Figure 14 is entirely 
blank, with no headings, no values, and no lines.

Figure 14. The last page of the report has data for only one year. 

DOWNLOAD

Subscribers can download FR201705code.zip in the SourceCode sub directory of the document 
portal. It contains the following fi les: 

tamargranor201705_code.zip
Source code for the article “Handling crosstabs and other wide data in VFP reports” 
from Tamar E. Granor, Ph.D.

whilhentzen201705_code.zip
Source code for the article “The Database Documentor” from Whil Hentzen

Figure 13. The fi rst page of the report includes data for two year.


